Epigenetics and Epigenome
The Epigenome is a multitude of chemical compounds that tells the genome what to do whereas Epigenetics is the study of these chemical reactions and the factors that influence them. As an organism grows and develops, carefully orchestrated chemical reactions activate and deactivate parts of the genome at strategic times and in specific locations. The complete assembly of human genome is about 3 billion base pairs of DNA that makes each of the individual unique. DNA holds the instructions for building the proteins that carry out different functions in a cell. The epigenome is made up of chemical compounds and proteins that can attach to DNA and direct such actions as turning genes on or off, controlling the production of proteins in particular cells. The epigenome dynamically responds to the environment. Stress, diet, behavior, toxins, and other factors regulate gene expression.
- Next Generation Sequenceing Techniques
- Different Assays Techniques
- Genome Based Analaysis
- Bioinformatics Approach
- Biostatistics Approach
Related Conference of Epigenetics and Epigenome
20th World Congress on Tissue Engineering Regenerative Medicine and Stem Cell Research
18th International Conference on Human Genomics and Genomic Medicine
16th International Conference on Human Genetics and Genetic Diseases
19th International Conference on Genomics & Pharmacogenomics
Epigenetics and Epigenome Conference Speakers
Recommended Sessions
- Advancement in Cancer Treatments
- Anti-Aging Medicine
- Artificial Organs
- Biobanking
- Biomaterial and Bioengineering
- Cancer Cell Biology
- Cell Biology
- Cellular and Gene Therapy
- Epigenetics and Epigenome
- Ethical Issues and Marketing Status Around the Globe
- Precision Medicine
- Regenerative Medicine
- Stem Cells and its Applications
- Tissue Culture and Preservation
- Tissue Engineering
- Tissue Repair and Regeneration
Related Journals
Are you interested in
- Achieving efficient delivery and editing - CRISPR 2025 (Italy)
- Bioinformatics - HUMAN GENOME 2025 (France)
- Cancer and stem cells - CRISPR 2025 (Italy)
- Cancer Genomics - HUMAN GENOME 2025 (France)
- Cognitive Computing - HUMAN GENOME 2025 (France)
- Computational Biology - HUMAN GENOME 2025 (France)
- CRISPR technologies and society - CRISPR 2025 (Italy)
- CRISPR technologies beyond genome editing and gene regulation - CRISPR 2025 (Italy)
- Drug Detection & Development in Bioinformatics - HUMAN GENOME 2025 (France)
- Emergency Medicine - HUMAN GENOME 2025 (France)
- Epigenetics Biomarkers - HUMAN GENOME 2025 (France)
- Genetically Modified Organisms - HUMAN GENOME 2025 (France)
- Genome editing and gene regulation in human health - CRISPR 2025 (Italy)
- Genome editing and gene regulation in industrial bacterial biotechnology - CRISPR 2025 (Italy)
- Genome editing and gene regulation in industrial eukaryotic biotechnology - CRISPR 2025 (Italy)
- Genome Editing Methods and Novel Tools - CRISPR 2025 (Italy)
- Genome Mapping - HUMAN GENOME 2025 (France)
- Genomic Approach to Drug Discovery - HUMAN GENOME 2025 (France)
- Genomic Information in Medicine - HUMAN GENOME 2025 (France)
- Genomic Vaccination - HUMAN GENOME 2025 (France)
- Genomics - HUMAN GENOME 2025 (France)
- Horizons of CRISPR biology - CRISPR 2025 (Italy)
- Human Gene Therapy - HUMAN GENOME 2025 (France)
- Human Genetics - HUMAN GENOME 2025 (France)
- Infectious Diseases - HUMAN GENOME 2025 (France)
- Medicine Genomics - HUMAN GENOME 2025 (France)
- Personalized Medicine - HUMAN GENOME 2025 (France)
- Pharma Genomics & Pharma Informatics - HUMAN GENOME 2025 (France)
- Plant and Animal Biotechnology - CRISPR 2025 (Italy)
- Preimplantation Genetic Diagnosis - HUMAN GENOME 2025 (France)
- Structural Biology and Bioinformatics - CRISPR 2025 (Italy)
- Therapeutic Genome Editing - CRISPR 2025 (Italy)